Toward a Green California Hydrogen Highway:

Lessons learned from Solar, Wind and Biomass

Woodrow W. Clark II, Ph.D.

CEO/President

Clark Communications, LLC, San Francisco and Los Angeles, CA. USA

Stephen Irvin

PhD Candidate

University of California, Santa Barbara, CA. USA

Introduction

- Solar Industry
 - Pianeta "Sun Jump" Project in Italy
- Wind Industry
 - GE Large Scale Wind-Hydrogen Systems
 - Example: Tug Hill, Syracuse, NY
- Biomass Industry
 - California Bio Mass Consortium
- Cal State University LA
 - Green Hydrogen Power Station

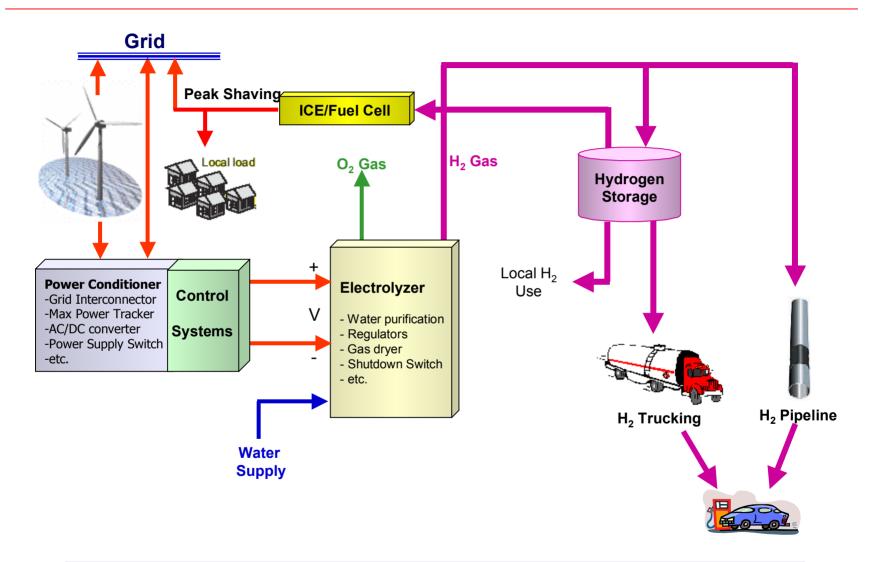
Solar Pianeta "Sun Jump" Project

- The goal of this project is to provide low-cost and environmentally friendly energy to a natural gas substation where the pressure of natural gas is reduced and finally transitioned to a fully renewable hydrogen station.
- The area shown is part the methane pipe-line network of SEI S.p.A. of Settimo Torinese (near Turin) and is on-site power not on electricity grid.
- The investment for this solution is lower than the cost of a new connection to the electricity grid and there is no impact on the environment.

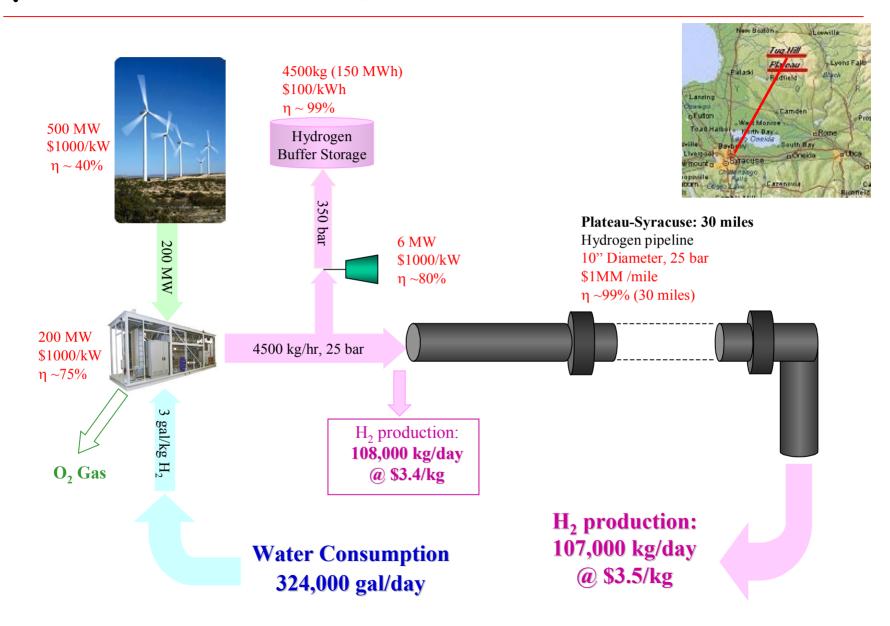
Pianeta "Primo Settimo" Project

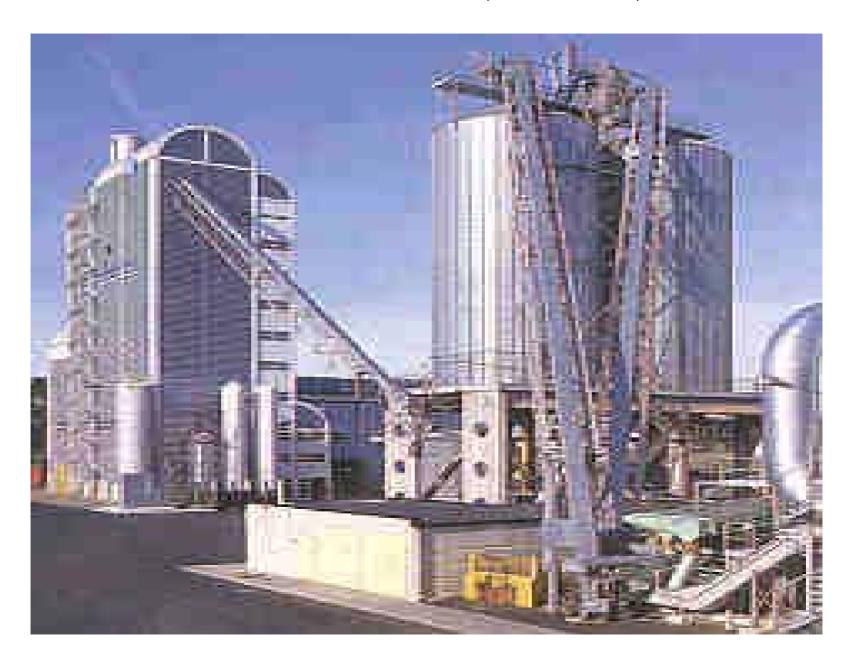
Pianeta Photo: new headquarters of ASM Spa in Settimo Torinese (near Turin) Italy.

- To design and construct the first plant in Piedmont for the production, storage and use of hydrogen for energy purposes
- To demonstrate that it is possible to use hydrogen for energy production, with a lower investment and shorter pay-back period than that which has, until recently, existed.


Wind Industry

- Intermittent source now predicable under CAISO and FERC Tariffs□□
- Uncertainties with Subsidies and Production Tax Credit under frequent political consideration
- Feed-in tariffs have worked best in European markets
- Cost reductions and local on-site through hybrid technologies
- System Benefit Charge for Public Benefits Fund
- Net metering and direct access rules need to be changed

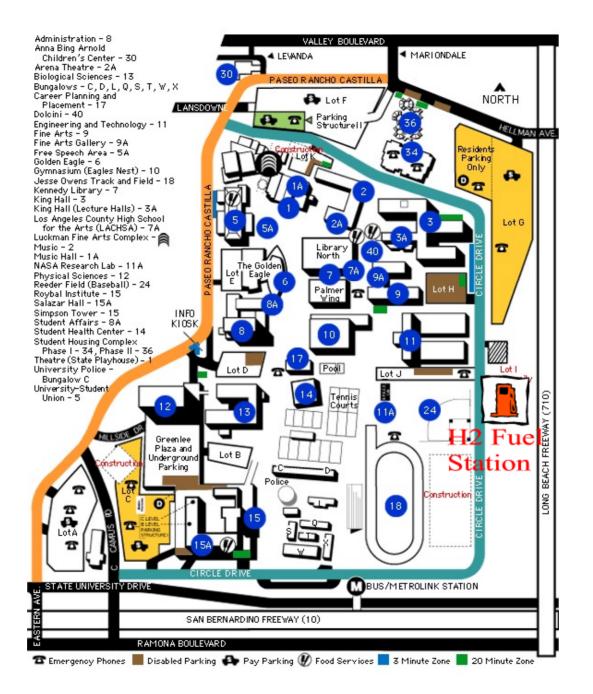

GE Photo: 24 MW Klondike Wind Power Facility Wasco, OR.

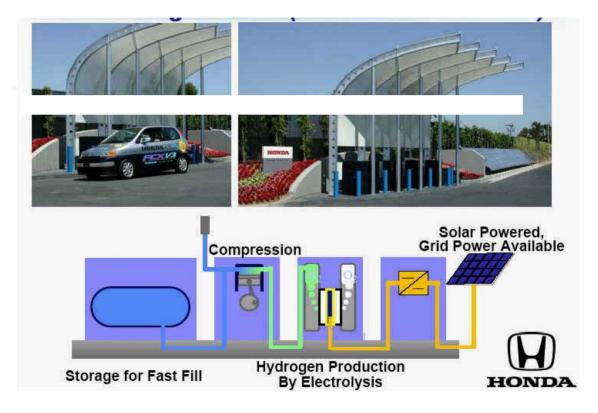


Wind-Hydrogen Forms a Green Energy Cycle and is Technically Feasible

H₂ Production - Pipeline Delivery (Tug Hill -Syracuse)

Varnamo Bio Mass Plant, Malmo, Sweden


Biomass


NREL Photo: Wheelabrator Shasta 49 MW Biomass Power Plant Anderson, CA.

Cal State University - LA

CSULA - Estimated System Weight and Dimensions							
Description	Quantity required	Model	Capacity	Length In	Width	Height In	Estimated Weight lbs
		HOGEN®H					
Proton electrolyzer	1	Series	200 scfh	78	32	78	1750
Carbon Fiber low pressure							
storage tank	1 tank	None	2800 scf	96	32 (diameter)		300
High Pressure Carbon fiber tank array	2	None	22304	96	144	72	3200
Compressor	1	PDC 4 - 6000	80 to 200 scfh	60	36	62	2300
Cooling unit for Hogen	1		16Kw	60	60	42	1800
FTI Dispenser	1	H1-412232	N/A	31.5	11.8	39.4	175

Honda Renewable Hydrogen Refueling Plant, Torrance, CA

CalTrans District #7 HQ

Los Angeles, CA

Conclusions: the road ahead

- _ Transformation from a global economy dependent upon fossil fuels to renewable fuels for an hydrogen economy is happening today worldwide.
- This "paradigm shift" is one as dramatic as the Industrial Revolution itself.
- _ Hydrogen economy is not an "adjustment" or "business cycle" or "bubble".
- _ Implement "civic markets" as collaborations between public -- private sectors.
- California providing the initial "market driver" or public sector demand for new commercial emerging environmentally sound technologies for public and then private sector demand.
- Government should lead partnerships in an effort to combine infrastructures with advanced commercial hybrid technical systems
- Combine hydrogen for stationary power with future transportation fuel needs to expedite the paradigm change now in this Century.
- _ Immediate economic and business development for any region or nation-state.
- _ Production of hydrogen is derived from renewable energy resources, not only are there societal benefits but also sustainable economic growth.

Contacts for more information

Dr. Woodrow W. Clark II

Clark Communications, LLC

PO Box #17975

Beverly Hills, California 90209

Direct Number (310) 858 - 6886

Fax (310) 858 - 8661

Email wclark13@aol.com

OR

Stephen Irvin

University of California, Santa Barbara

(805) 686-5176

Email sirvin@bren.ucsb.edu